Condition Based Maintenance: Killer app voor het Internet of Things

Internet of Things volgt cloud computing op als grootste hype van het moment. Om hypes te ontgroeien moet een aanjager voor een nieuwe generatie toepassingen opstaan: een toepassing die grote financiële voordelen oplevert en die in korte tijd op grote schaal geïmplementeerd kan worden. Voor het Internet of Things is Condition Based Maintenance die toepassing.

Gartner voorspelt dat de waarde van het Internet of Things (IoT) in 2020 zo’n 1.5 biljoen dollar bedraagt. Wat dichter bij huis stelt ABN AMRO dat de Nederlandse markt voor IoT-oplossingen jaarlijks 2 miljard euro groot is. De verwachtingen zijn dus hooggespannen, maar de echte doorbraak wacht nog op een killer app – zoals CRM dat was voor cloud computing. Wie de Salesforce van het Industrial Internet of Things gaat worden is nog niet bekend, maar dat het bedrijf Condition Based Maintenance oplossingen levert staat vast.

Condition Based Maintenance

Condition Based Maintenance (CBM) stelt dat onderhoud moet plaatsvinden voordat machines falen of als de prestaties afnemen – maar niet eerder. De actuele conditie van machines is daarmee bepalend voor het inplannen van onderhoud. Daarmee wordt de beschikbaarheid van machines hoger, verbetert de operationele betrouwbaarheid en vallen de kosten voor onderhoud 10 tot 40 procent lager uit.

In het verleden werd CBM breed ingezet: De chef-werkplaats kende na 20 jaar trouwe dienst zijn machinepark van buiten en kon aan bijvoorbeeld trillingen voelen welke machines onderhoud nodig hadden. Doordat de complexiteit van machines is toegenomen en de chef werkplaats met pensioen is gegaan zijn onderhoudsmodellen op basis van mean time between failure ontstaan: historische gegevens worden gebruikt om in te schatten wat de optimale onderhoudsinterval is. Het probleem van deze methode is dat deze geen rekening houdt met de belangrijkste reden om onderhoud te plegen: de conditie van machines.

Om de actuele conditie van een machine te bepalen en de toekomstige onderhoudsbehoefte te voorspellen zet een cloud-applicatie sensordata – bijvoorbeeld trilling, stroomverbruik en temperatuur – om in patronen van gedrag. Algoritmes leren de verschillen tussen gezonde en ongezonde patronen herkennen en voorspellen wanneer en waarom machines gaan falen. Onderhouds-managementsystemen gebruiken deze informatie om onderhoud in te plannen op basis van de actuele behoefte.

Slimme machines

Het Internet of Things bestaat uit apparaten die met internet verbonden zijn. Ze delen proces- en sensordata met andere apparaten of applicaties. Geholpen door algoritmes wordt data omgezet in bruikbare informatie om bijvoorbeeld processen te optimaliseren of – in het geval van CBM – de toestand van de machine door te geven.

Machines worden al sinds de jaren 70 uitgerust met sensoren. In bijvoorbeeld de olie- en gasindustrie helpen ze ongelukken te voorkomen door alarm te slaan als grenswaarden worden overschreden. Geholpen door de ontwikkeling van smartphones – die vol zitten met kleine, goedkope sensoren – neemt het aantal sensoren in de industrie razendsnel toe. Daarmee groeit ook de hoeveelheid data die slimme machines genereren.

De introductie van cloud computing maak het mogelijk om die data op een centrale plek op te slaan, als basis voor het ontwikkelen van modellen en algoritmes. Klassieke kunstmatige intelligentie ontwikkelt kennis- en beslisregels op basis van historische data. Daarmee kunnen machines eenvoudige beslissingen zelf nemen.

Machine learning – een vorm van kunstmatige intelligentie – wordt pas sinds enkele jaren op grote schaal toegepast. Het is het laatste ontbrekende stukje in de puzzel. Want waar klassieke kunstmatige intelligentie binnen CBM een one-size-fits-all-model hanteert, maakt machine learning het mogelijk om de toestand van elke machine individueel te beoordelen. De data scientist bepaalt hóe een algoritme leert, maar wát het leert is afhankelijk van de kenmerken van de machine waarvan data worden geanalyseerd. Daarmee is het mogelijk om een op machine learning gebaseerde oplossing uit te rollen over één of duizenden machines tegelijk, zonder aanpassingen aan de algoritmes zelf.

Killer app(s)

De grote aanjager van nieuwe technologie – de killer app – is de eerste toepassing die op grote schaal wordt geïmplementeerd. Daarvoor is een combinatie van grote toegevoegde waarde en een snelle, eenvoudige implementatie vereist. Het eerste zorgt voor vraag naar de toepassing, het tweede dat een implementatie op grote schaal technisch realiseerbaar is.

Voor cloud computing was Salesforce die toepassing. De toegevoegde waarde van online CRM bleek vele malen groter dan de kosten. Een implementatie was voor de IT-afdeling geen probleem: de benodigde inspanning bleef beperkt tot een migratie-traject van bestaande klantdata. Die combinatie van grote toegevoegde waarde en relatief eenvoudige implementaties zorgden voor de snelle uitrol van Salesforce, en in zijn kielzog voor een versnelling in de acceptatie van cloud computing als de nieuwe standaard.

Condition Based Maintenance biedt eenzelfde combinatie van eigenschappen: de opbrengsten wegen ruimschoots op tegen de investeringen, implementaties op grote schaal worden door machine learning mogelijk gemaakt. Een belangrijk verschil is dat het IoT-oplossingen vooral bestaan uit gespecialiseerde applicaties die één – of een beperkt aantal – taken uitvoeren. Een combinatie van IoT-applicaties of services zorgt voor het ontstaan van de smart enterprise, wat in goed Nederlands Industrie 4.0 heet.

CIO wordt regisseur

De CIO bevindt zich in een ideale positie om als regisseur op te treden, die de brug slaat tussen functionele afdelingen (vraag) en interne- en externe leveranciers (aanbod). Ook schept de CIO kaders waarbinnen snelle applicatieontwikkeling mogelijk wordt gemaakt. Daarbij gaat het voor IoT-toepassingen met name om het verlenen van toegang tot data aan applicaties en het bewaken van standaarden voor de uitwisseling van gegevens tussen de verschillende applicaties. Als deze kaders goed zijn vormgegeven biedt dit een gouden kans om de enorme hoeveelheid data die door het IoT gegenereerd worden in dienst te stellen van het bedrijfsresultaat.