November 11, 2019

Dutch consortium aims to make 40% of the world’s electricity consumption more efficient

Leiden -  The Institute for Sustainable Process Technology together with Nouryon, Vopak, Semiotic Labs, TPA Adviseurs and the Universiteit Utrecht's Copernicus Institute have received a grant to develop technology that reduces energy waste from industrial AC motors. AC motors consume roughly 40% of the world’s electric energy resources. The consortium will develop algorithms that analyse electrical waveforms in order to provide asset owners with the insights needed to reduce energy consumption by 15% to 30%, without compromising on output.

Frans van den Akker, Director Sustainability at ISPT: “The goal of ISPT is to promote sustainable practices in the process industry. To that end, we will work with asset owners and technology providers on developing both tools and practices that enable the reduction of energy waste. The reality of the global economy also mandates that these technologies improve sustainability without compromising output performance. We believe this project will create such a tool: It provides the insights that are required for energy reduction as well as increases in  system performance. A win for the environment, for the production manager and for the CFO”.

Semiotic Labs have developed the first condition monitoring solution to offer efficiency improvement insights, paving the way forward for sustainability improvements across a number of clients.

SAM4 by Semiotic Labs measures current and voltage signals to detect developing faults in AC motors and rotating equipment such as pumps, conveyors and compressors up to 4 months in advance of the fault causing a failure. The motor data has now been reapplied to detect inefficiencies in industrial processes. SAM4 can now offer the insights needed to increase electrical asset efficiency by 15-30%.

Simon Jagers - Founder of Semiotic Labs - “Sustainability is a crucial part of modern industry, and our tool will enable organizations to drastically reduce electrical energy consumption. Around 40% of global electrical energy consumption comes from the use of industrial AC motors, and the insights offered by SAM4 can help our clients make a big dent in that number. Together, we can develop technology that helps to reduce the world’s energy consumption in a meaningful way.”

Working alongside partners Vopak and Nouryon, Semiotic Labs is continuously testing new ways to provide even greater efficiency improvement insights.

Leo Brand, CIO at Vopak - “Sustainability is high on our list of priorities, and the reduction of electricity consumption is a crucial part of that. Integrating SAM4 into our critical processes is an important step in realising our energy efficiency targets.”

Marco Waas, Director RD&I and Technology at Nouryon, “SAM4 gives our maintenance staff the insights they need to identify which processes in our factory are not running as efficiently as possible. This means we can focus our efficiency improvements on processes where we can make the greatest impact on energy reduction. The technology, which is part of the company’s Industry 4.0 Program, is initially being tested at several of the company’s sites in the Netherlands and Germany.”

The scalability of the solution has also meant that a large deployment can take place in a cost-efficient way. Traditional condition monitoring requires sensor installation directly on the asset, which is an issue when the assets are located in ATEX Zones, hard to reach places or hazardous locations. SAM4 sensors are installed inside the Motor Control Cabinet, meaning that SAM4 can be installed and scaled quickly and cheaply.

Together with Vopak and Nouryon and a number of other partners, Semiotic Labs are rolling out a solution that will make a significant difference to world energy consumption.

About ISPT

We believe that radical change can be achieved through technological innovation and cooperation. As an active and open innovation platform for sustainable process technology we connect stakeholders from different sectors and disciplines. At ISPT, Industry, SME’s, scientists and governmental bodies find the inspirational and trusted environment where they can optimally work together to stimulate break through innovations. Together we aim to realize a circular and carbon neutral industry in 2050.

About Semiotic Labs

Semiotic Labs was established in 2015 with the aim of making maintenance 100% predictable. From Leiden, 24 Data Scientists, Software Developers and Technical Specialists are working on SAM4 - the predictive maintenance solution for AC motors and rotating equipment. Semiotic Labs is active in various industries and works with customers such as Vopak, Nouryon, ArcelorMittal, Tata Steel, Schiphol, and Engie.

About Vopak

Royal Vopak is the world's largest independent tank storage company. Vopak operates a worldwide network of terminals at strategic locations along important trade routes. With more than 400 years of history and a strong focus on safety and sustainability, Vopak provides safe, clean and efficient storage and handling of liquid bulk products and gases for their customers. In this way Vopak enables the delivery of products that are vital for our economy and daily life, ranging from chemicals, oils, gases and LNG to biofuels and Veg Oils.

About Nouryon

We are a global specialty chemicals leader. Markets worldwide rely on our essential chemistry in the manufacture of everyday products such as paper, plastics, building materials, food, pharmaceuticals, and personal care items. Building on our nearly 400-year history, the dedication of our 10,000 employees, and our shared commitment to business growth, strong financial performance, safety, sustainability, and innovation, we have established a world-class business and built strong partnerships with our customers. We operate in over 80 countries around the world and our portfolio of industry-leading brands includes Eka, Dissolvine, Trigonox, and Berol.

October 1, 2019

Vopak scales up SAM4 deployment across three locations

Leiden - Vopak and Semiotic Labs have signed an agreement to scale up the deployment of SAM4 condition monitoring. It will be implemented across additional terminals and expanded at the ones it was tested on. SAM4 will be responsible for monitoring a high number of business-critical pumps at each site.

SAM4 is a smart condition monitoring solution for critical AC motors and rotating equipment that detects upcoming failures at an early stage. Developed by Semiotic Labs, it was initially deployed inside terminals at Vopak Vlaardingen and Vopak Singapore as part of a large-scale test. Based on the results of the test, SAM4 is being scaled up across three locations.

In addition to the current expansion, SAM4 is being added to Vopak’s technology catalogue. This will pave the way for a much larger deployment across additional sites in the future.

Leo Brand, CIO of Vopak: “Vopak continues to innovate in the way we design, construct, maintain and operate our terminals. Innovative technologies such as that provided by Semiotic Labs will help us to improve safety at our terminals, enhance the reliability of our operation, and reduce our energy consumption.”

SAM4 uses electrical waveform analysis to monitor the condition of AC motors and rotating assets such as pumps, all from within the Motor Control Cabinet. This means the maintenance team can accurately detect upcoming faults without attaching any sensors directly to the pump. This is useful for Vopak, as it enables the remote condition monitoring of assets that operate in inherently hazardous environments, such as tank terminals.

Simon Jagers, Founder of Semiotic Labs: “We’ve worked with Vopak for the better part of our company’s history. Since the beginning, they have both supported our work and challenged us to do better. Signing the framework agreement with Vopak today represents an important milestone in our relationship. Looking to the future, we are pleased that Vopak’s commitment and technical expertise creates an environment that allows us to provide value to their daily operation, as well as a breeding ground for innovation and the continuous improvement of SAM4.”

About Semiotic Labs
Semiotic Labs was established in 2015 with the aim of making maintenance 100% predictable. From Leiden, 24 Data Scientists, Software Developers and Technical Specialists are working on SAM4 - the condition monitoring solution for AC motors and rotating equipment. Semiotic Labs is active in various industries and works with customers such as Vopak, Nouryon, ArcelorMittal, Tata Steel, Schiphol, and Engie.

About Vopak
Royal Vopak is the world's largest independent tank storage company. Vopak operates a worldwide network of terminals at strategic locations along important trade routes. With more than 400 years of history and a strong focus on safety and sustainability, Vopak provides safe, clean and efficient storage and handling of liquid bulk products and gases for their customers. In this way Vopak enables the delivery of products that are vital for our economy and daily life, ranging from chemicals, oils, gases and LNG to biofuels and Veg Oils.

June 19, 2019

SAM4 has a fresh new look

After gathering your feedback, we have made some changes to the SAM4 dashboard that we think you’ll love.

Instantly actionable failure analysis

The new traffic light warning system gives you an instant heads up when something is going wrong. SAM4 will also give you an idea of what is causing the problem, and recommend next steps, meaning you can fix or replace your motor faster.

Real-time performance & trends over time

See the data you need as soon as you need it. Our real-time performance module will show you the metrics you need to see, while they are being recorded.

For the bigger picture, our Trends over Time module will also show you Running Time, Energy Consumption and Starts on any motor over time.

Understand what makes your motor tick

Want to see how Power Factor and Current are linked for a specific motor? We’ve got just the ticket. Our new dashboard helps you to understand the relationship between various motor metrics by comparing them all on one plot.

Curious to see if motor performance is decreasing over time? Our Performance Timeline will show you key metrics over a time period of your choosing.

Like the look of our dashboard?

If you are looking for a Condition Monitoring system that allows you to get the most out of your data, book a SAM4 demo with one of our consultants.

May 10, 2019

Success Story: Honeywell

SAM4 detects belt looseness on a critical HVAC system

Honeywell in Delft installed SAM4 on a critical HVAC-system to detect upcoming failures at an early stage so that maintenance is performed before breakdowns occur. Because the HVAC-system was installed in a remote location, installing vibration sensors was impossible. Honeywell decided to implement SAM4, Semiotic Labs’ online condition monitoring solution that analyses electrical waveforms to detect failures. SAM4 installs sensors inside the motor control cabinet and not on the asset in the field, enabling condition monitoring for assets operating in hard to reach places.
Implementation SAM4 installs sensors and communication devices inside the motor control cabinet. The system is connected to the SAM4-platform via 4G. After 60 minutes, the system was up-and-running and started collecting data. After a training period of 3 weeks, SAM4 provided insights into the condition, performance, and energy consumption.
Results SAM4 detected a loose belt and sent an alarm - triggering an inspection. The findings of SAM4 were substantiated: Honeywell replaced the belt, thus preventing unplanned downtime.  

The data After a couple of months of monitoring, the system:
1. SAM4 generated an alarm for an increase in energy at the rotational frequency - which is often associated with a loose belt.
2. Upon inspection, a loose and dry belt was detected. In lieu of replacement parts, it was tightened, resulting in a reduction of scores for that specific failure mode.
3. After replacing the ageing belt with a new one, scores levelled out at the pre-issue level

April 17, 2019

Installing Sensors in the control cabinet: When does this add value?



A growing number of companies are moving toward condition-based maintenance (CBM) on assets such as motors and pumps.  This concept is based on the idea of matching maintenance to the state of the equipment, rather than time based preventive maintenance tasks.  When the maintenance manager has insight into the real-time condition of a machine, he can adjust his maintenance strategy optimally.

Sensors collect data, which is used to determine the condition of the assets. For example, velocity sensors or accelerometers measure vibration. For each application there are several commercially available sensor options - some more robust or accurate than others. One common drawback with sensors, however: they must be mounted on a machine to make measurements.

Alternatively, a new method to determine machine condition is by measuring a high frequency on the cables of motors or pumps. A deviation in the power supply can indicate a mechanical or electronic problem to the asset itself. For example, vibrations disrupt the electromagnetic field in an electric motor, which can be read in the data that generates the current. Every failure mode has a specific signature or fingerprint that can be measured in the current or voltage.

This alternate method of measurement still drives toward the goal of condition monitoring. A large difference with other “traditional” methods is where the measurement takes place. The current measurement does not have to be determined at the asset; it can take place in the control cabinet. Installing sensor modules in a control cabinet (rather than in the field) can provide many advantages.

Field Sensors Are Subject to External Factors

Sensors in the field are subject to local conditions. In the food sector, for example, strict hygiene and quality requirements apply. Rooms, surfaces and materials are cleaned often. The equipment and the sensors must be resistant to water or high humidity.

In other sectors, external factors such as extremely high or low temperatures, pressures, or contaminants may be present. This can lead to problems when sensors are not sufficiently robust.  A defective sensor does not provide reliable data. Sensor modules mounted in a control cabinet are in a stable, conditioned, dry room - ideal conditions for sensors to do their job.

Field Sensors Need Energy Sources

To collect and send information, sensors must be provided with an energy source. In the past, this was done via cables. However, laying cables is a time-consuming and expensive affair. In recent years, wireless sensors have gained a lot of ground. These sensors usually run on batteries. Depending on the type of sensor and the application, a battery will run out quickly or less quickly. Sending data once a day or every fifty milliseconds is a big difference. When batteries are drained, a mechanic will have to replace them – no battery, no data.

One solution for this problem is energy harvesting, a process in which energy (for example heat) is extracted from the immediate environment to supply the sensor with energy. However, this is currently not yet possible with all sensors or in all situations. With sensor modules placed in a control cabinet, the energy problem disappears. In a control cabinet, a sensor module can easily be connected to the mains.

Field Sensors Have Higher Installation Costs

A third advantage of sensor modules in a control cabinet is in installation. Motors or assets whose condition needs to be measured are often spread over a facility. In a baggage handling system, enormous distances exist between motors of a conveyor belt. Installation of sensors on each individual motor would take a lot of installation time.

Moreover, installing sensors at the right place in the asset is not always easy. Certain sensors must be located very closely to their source, while other sensors must be installed in places that are difficult to reach. Getting to motors integrated in larger machines, or submerged pumps can often prove problematic.

At some locations, there may be a flammable ATEX environment. Sensors here must meet certain ATEX or Classified flammability certifications. The installation of the sensors themselves in this environment also requires extra measures. Installing sensors in the field is therefore often difficult, cumbersome or expensive.

In the case of sensor modules in switch cabinets, the above issues do not play a role. The power supply of several assets comes together in one central location: the switch cabinet. If possible, this is always placed outside a potentially explosive area.  It must always be accessible or easily accessible. As a result, installation costs can be reduced.

Furthermore, preparations such as pulling cables can be done ahead of schedule, which means that installations only need be out of operation for a short period of time.

In practice

Some have already installed sensor modules in their control cabinets.  Two examples are Vopak Vlaardingen, a storage company; and Kaak Group, a manufacturer of machines for the bakery industry.

Vopak Vlaardingen

Marcel Kool, Maintenance Engineer at Vopak:

“Vopak Vlaardingen temporarily stores products from sea-going vessels in storage tanks. The product is then further distributed in trucks or lighter barges. About two hundred pumps take care of the loading at this location. For us it is important to monitor our equipment better so that we can increase service to our customers. We want to increase the predictability of maintenance.”

Vopak Vlaardingen chose not to install sensors on the pumps themselves, but centrally in a control cabinet.  Kool: “The pumps are not positioned far from each other, but they are insulated so you can't reach them directly if you want to install a sensor. ATEX was not an issue at our location, but it would be an extra factor to take into account at other locations.”

Installation & Baseline Determination

Vopak started a pilot program on ten pumps.  “The installation of the sensor modules in the control cabinet went quite smoothly. No special procedures were required, which resulted in a great deal of installation advantage. The installation of the modules was followed by a period in which the machine learning programmes were worked into and a baseline measurement was performed, a sort of starting position of the pump.

“Almost immediately after this phase, we received two indications based on the data. The dashboard indicated that the pump was almost failing. Mechanics examined these two pumps in the field and what the system indicated appeared to correspond with the findings in the field. This has increased the confidence in the system, which certainly offers perspective for the future.”

Justification for system extension to all 200 pumps may not make sense. “The pumps we selected for the pilot run regularly. We only use a small number of pumps on site sporadically. These pumps would take a little longer to learn, simply because they are used so little. If you let go of a business model on these pumps, the outcome may be that it is not sufficiently profitable to monitor them, whatever sensor technology you choose. For the majority of the pumps, condition monitoring is an option to consider.”

Kaak Group

Kaak Group has also chosen to install sensor modules in their control cabinet. Marcel Trapman is team leader at iBakeware, which builds software for monitoring and analysing the bakery line and the baking process:

“Our bakery lines that are with customers consist of a combination of a number of machines. There are critical, large motors in these lines that are built to customer specifications. If such an engine breaks down at a certain moment, this means that the line must be stopped, and a delivery may not be possible.  To avoid a long standstill, a spare motor must be stocked. This can be prevented by monitoring motors using sensors. If a discrepancy is found, an inspection can be carried out in time, spare parts can be ordered and maintenance can be scheduled.”

The bakery lines currently contain many different types of sensors and can be equipped with optional sensors at the customer's request. An example of such an optional sensor is that of Semiotic Labs.

“At a later stage we want to be able to give the customer the choice whether he wants to monitor the motors using data and sensors. For us, therefore, the possibility of retrofitting sensors in a fairly simple manner is of great importance. With the sensor module in the control cabinet, we do not need to reach the motor at all. We therefore see it as an added value for the customer to be able to retrofit it fairly easily. That's why we chose this type of system.”

Would you like to know whether sensors in the control cabinet also have added value for you? Check out our solution, follow us on LinkedIn or schedule an appointment with us.


April 12, 2019

1.000 kilowatt motor, zero unplanned downtime

Facta and Semiotic Labs collaborate to eliminate unplanned downtime
for Crown Van Gelder

Collaboration Monitoring & Service

Facta Aandrijftechniek and Semiotic Labs work together to ensure a higher availability of production resources. SAM4, the smart sensor of Semiotic Labs, monitors critical assets from the control cabinet and signals approaching failures up to 4 months before production resources fail. Facta Aandrijftechniek monitors the alarms and carries out inspections, repairs or replacements.


Cees Slegt, Facta: "We relieve our customers of their worries by taking over the maintenance of engines and assets. This enables us to achieve higher availability of production resources at lower costs. We do this by doing risk analysis and drawing up a maintenance plan based on these. In combination with condition monitoring from Semiotic Labs, we can optimize maintenance intervals and prevent unplanned downtime."

In practice

Semiotic Labs' SAM4, monitors critical assets for Crown Van Gelder. On 6th December 2018, SAM4 reported electrical damage to a 1,000-kilowatt motor. Because the replacement of the motor involves considerable downtime, it was decided to closely monitor the development of the condition to determine whether it is possible to keep the motor operational until the next maintenance stop.


The scheduled maintenance stop was met, and the engine was replaced during the regular maintenance stop. Because the engine was not on the list for inspection, unplanned downtime was avoided.

Andre Prent - manager maintenance (PM2) Crown Van Gelder

"Our customers count on us to deliver consistent quality, on time. That's why we at Crown Van Gelder continuously invest in upgrading our facilities to continue to improve service, performance and, competitiveness. Our investment in the innovative way of monitoring by Facta and Semiotic Labs is one example. This is now paying off because the alarm and service have prevented a major standstill and have not compromised the security of supply".

March 25, 2019

Newsletter March 2019

Dear reader,

One year ago, the first SAM4 units were installed in production environments. The implementation of 4th generation Smart Asset Monitor marked the launch of the 1st commercial version. SAM4 has monitored over 1.000.000 running hours of motors and detected 84% of failures in 2018 and 100% in 2019 (so far).

More about SAM4:
ArcelorMittal Use Case - SAM4 detects 100% of failures up to 4 months in advance.
Vopak monitors critical pumps (video)
Pump cavitation demo (video)

To see SAM4 in action, please join us on April 11th in Ahoy during Maintenance Next, where we will demo the integration with Salesforce’ Field Service Lightning. In short: SAM4 detects failures, FSL automatically generates work orders, permits, and scheduling services.

Over the next couple of months, several improvements to the dashboard will be implemented. We’ll focus on offering a more complete and concrete picture of the condition and performance of connected assets. In addition, we are working on a project that aims to provide in-depth energy savings potential based on the same data we use to monitor the condition of assets.

We’ll keep you posted!

Best regards,

The Semiotic Labs-team